Defects between Gapped Boundaries in $(2 + 1)D$
Topological Phases of Matter

Iris Cong, Meng Cheng, Zhenghan Wang
cong@g.harvard.edu

Department of Physics
Harvard University, Cambridge, MA

January 13th, 2018

(2 + 1)D topological phases

- (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
- Difficult to realize
Introduction and Motivations

- $(2 + 1)D$ topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize
- Want non-abelian objects arising from abelian materials → study gapped boundaries and defects
(2 + 1)D topological phases
- (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
- Difficult to realize
- Want non-abelian objects arising from abelian materials \rightarrow study gapped boundaries and defects
- Gapped boundaries and boundary defects found in physical (FQH/SC/FM) systems (Lindner, Berg, Refael, Stern)

Introduction and Motivations

Iris Cong, Harvard

Defects between gapped boundaries

JMM, January 2018
Review:

- Levin-Wen model
- Gapped boundaries, indecomposable modules, and Lagrangian algebras
- Condensation
Overview

- **Review:**
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation

- **Main Contributions:**
 - Boundary defects through multi-fusion category
 - Relation with bulk symmetry defects: crossed condensation
 - Braiding boundary defects
Overview

- **Review:**
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation

- **Main Contributions:**
 - Boundary defects through multi-fusion category
 - Relation with bulk symmetry defects: crossed condensation
 - Braiding boundary defects

- **Outlook**
Overview

- **Review:**
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation

- **Main Contributions:**
 - Boundary defects through multi-fusion category
 - Relation with bulk symmetry defects: crossed condensation
 - Braiding boundary defects

- **Outlook**

A topological phase of matter is an equivalence class \mathcal{H} of gapped Hamiltonians that realize a topological quantum field theory (TQFT) at low energy.

One family of such Hamiltonians is the Levin-Wen model.
The Levin-Wen model

- Input: trivalent lattice (e.g. honeycomb), unitary fusion category (UFC) \mathcal{C}
- Realizes TQFT given by Drinfeld center $\mathcal{Z}(\mathcal{C})$
 - $\mathcal{Z}(\mathcal{C})$ is a modular tensor category (MTC):
 - simple objects form anyon system (UFC + non-degenerate braiding)
The Levin-Wen model: Examples

- Example: $\mathcal{D}(\mathbb{Z}_p)$, the \mathbb{Z}_p toric code
 - Anyons: $e^j m^k$, $0 \leq j, k \leq p - 1$, $e^{j_1} m^{k_1} \otimes e^{j_2} m^{k_2} \rightarrow e^{j_1 + j_2} m^{k_1 + k_2}$ (mod p)

- Example: $\mathcal{D}(S_3)$

Table: Fusion rules of $\mathcal{D}(S_3)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A \oplus B \oplus C</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
<td>G \oplus H</td>
<td>F \oplus H</td>
<td>F \oplus G</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>E</td>
<td>D \oplus E</td>
<td>A \oplus C \oplus F \oplus G \oplus H</td>
<td>B \oplus C \oplus F \oplus G \oplus H</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D \oplus E</td>
<td>B \oplus C \oplus F \oplus G \oplus H</td>
<td>A \oplus C \oplus F \oplus G \oplus H</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>G \oplus H</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
<td>A \oplus B \oplus F</td>
<td>H \oplus C</td>
<td>G \oplus C</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>F \oplus H</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
<td>H \oplus C</td>
<td>A \oplus B \oplus G</td>
<td>F \oplus C</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>F \oplus G</td>
<td>D \oplus E</td>
<td>D \oplus E</td>
<td>G \oplus C</td>
<td>F \oplus C</td>
<td>A \oplus B \oplus H</td>
</tr>
</tbody>
</table>
A gapped boundary is an equivalence class of gapped local (commuting) extensions of $H \in \mathcal{H}$ to the boundary.

Levin-Wen model: indecomposable (left) module category \mathcal{M} of \mathcal{C} (Kitaev and Kong):

- Category \mathcal{M} with (left) \mathcal{C}-action: $\mathcal{C} \otimes \mathcal{M} \rightarrow \mathcal{M}$, associativity/unit constraints
- Not direct sum of other such categories
Theorem (Ostrik)

When $\mathcal{C} = \text{Rep}(G)$ or Vec_G and \mathcal{B} is a quantum double, the indecomposable modules \mathcal{M} of $\mathcal{C} \leftrightarrow$ pairs (K, ω), $K \subseteq G$ (up to conjugation), $\omega \in H^2(K, \mathbb{C}^\times)$.
Gapped boundaries: Lagrangian algebras

Definition

A Lagrangian algebra \mathcal{A} in a MTC \mathcal{B} is an object with a multiplication $m : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ such that:

1. \mathcal{A} is commutative, i.e. $\mathcal{A} \otimes \mathcal{A} \xrightarrow{c_{\mathcal{A},\mathcal{A}}} \mathcal{A} \otimes \mathcal{A} \xrightarrow{m} \mathcal{A}$ equals $\mathcal{A} \otimes \mathcal{A} \xrightarrow{m} \mathcal{A}$, where $c_{\mathcal{A},\mathcal{A}}$ is the braiding in \mathcal{B}.

2. \mathcal{A} is separable, i.e. the multiplication morphism m admits a splitting $\mu : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ a morphism of $(\mathcal{A}, \mathcal{A})$-bimodules.

3. \mathcal{A} is connected, i.e. $\text{Hom}_{\mathcal{B}}(1_{\mathcal{B}}, \mathcal{A}) = \mathbb{C}$

4. The Frobenius-Perron dimension (quantum dimension) of \mathcal{A} is the square root of that of the MTC \mathcal{B},

$$\text{FPdim}(\mathcal{A})^2 = \text{FPdim}(\mathcal{B}).$$ (1)
Gapped boundaries: Lagrangian algebras

Theorem (Davydov, Müger, Nikshych, Ostrik)
There exists a 1-1 correspondence between the indecomposable modules of \mathcal{C} and the Lagrangian algebras of $\mathcal{B} = \mathcal{Z}(\mathcal{C})$.

Corollary
Gapped boundaries in anyon system $\mathcal{B} \leftrightarrow$ Lagrangian algebras \mathcal{A} in \mathcal{B}

\mathcal{A} is the collection of bulk anyons that condense to vacuum on the boundary
Gapped boundaries: Lagrangian algebras

Examples:

- $\mathcal{D}(\mathbb{Z}_p)$:

<table>
<thead>
<tr>
<th>$K_1 = {1}$</th>
<th>$A_1 = 1 + e + \ldots + e^{p-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_2 = \mathbb{Z}_p$</td>
<td>$A_2 = 1 + m + \ldots + m^{p-1}$</td>
</tr>
</tbody>
</table>

- $\mathcal{D}(S_3)$:

<table>
<thead>
<tr>
<th>$K_1 = {1}$</th>
<th>$A_1 = A + B + 2C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_2 = \mathbb{Z}_3$</td>
<td>$A_2 = A + B + 2F$</td>
</tr>
<tr>
<td>$K_3 = \mathbb{Z}_2$</td>
<td>$A_3 = A + C + D$</td>
</tr>
<tr>
<td>$K_4 = S_3$</td>
<td>$A_4 = A + F + D$</td>
</tr>
</tbody>
</table>
Condensation

In general, bulk anyons may not condense to vacuum \rightarrow condense to boundary excitations

Definition

Let \mathcal{B} be a MTC, $\mathcal{A} \in \text{Obj} \mathcal{B}$ a Lagrangian algebra. The *quotient category* \mathcal{B}/\mathcal{A} is the category s.t.

1. $\text{Obj} \mathcal{B}/\mathcal{A} = \text{Obj} \mathcal{B}$
2. $\text{Hom}_{\mathcal{B}/\mathcal{A}}(X, Y) = \text{Hom}_{\mathcal{B}}(X, \mathcal{A} \otimes Y)$.

The resulting category of excitations is the functor category $\text{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ (a UFC)1

1In some cases, an *idempotent completion* may be necessary.
The condensation functor $F : \mathcal{B} \to \mathcal{B}/\mathcal{A}$ is a tensor functor.

Adjoint $I : \mathcal{B}/\mathcal{A} \to \mathcal{B}$ pulls excitation out of boundary, into bulk.
Examples:

- \(\mathcal{D}(\mathbb{Z}_p) \):
 \[A_1 = 1 + e + \ldots + e^{p-1}, \quad e^a m^b \mapsto m^b, \]
 \[\text{Fun}_C(\mathcal{M}_1, \mathcal{M}_1) = \{1, m, \ldots m^{p-1}\} \]

- \(\mathcal{D}(S_3) \):
 \[A_2 = A + C + D: \]
 \[A_1 = A + B + 2C: \]

<table>
<thead>
<tr>
<th>(a)</th>
<th>(F(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>(C)</td>
<td>(A + B)</td>
</tr>
<tr>
<td>(D)</td>
<td>(B + F)</td>
</tr>
<tr>
<td>(E)</td>
<td>(B + F)</td>
</tr>
<tr>
<td>(F, G, H)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(a)</th>
<th>(F(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(1)</td>
</tr>
<tr>
<td>(B)</td>
<td>(1)</td>
</tr>
<tr>
<td>(C)</td>
<td>(2 \cdot 1)</td>
</tr>
<tr>
<td>(D)</td>
<td>(s + sr + sr^2)</td>
</tr>
<tr>
<td>(E)</td>
<td>(s + sr + sr^2)</td>
</tr>
<tr>
<td>(F, G, H)</td>
<td>(r + r^2)</td>
</tr>
</tbody>
</table>
Thus far, one boundary type at a time
Boundary defects

- Thus far, one boundary type at a time
- Multiple adjacent boundary types → boundary defects
Boundary defects

- Thus far, one boundary type at a time
- Multiple adjacent boundary types → boundary defects
- Boundary defects category:
 $\text{Fun}_\mathcal{C}(\mathcal{M}_i, \mathcal{M}_j)$ (Kitaev and Kong)
Boundary defects (finite groups)

Theorem (Ostrik)
Let $\mathcal{C} = \text{Rep}(G)$ or Vec_G. Suppose gapped boundaries $\mathcal{A}_1, \mathcal{A}_2 (\mathcal{M}_1, \mathcal{M}_2)$ are given by subgroups K_1, K_2 (and trivial cocycles). Then simple objects in $\text{Fun}_\mathcal{C}(\mathcal{M}_1, \mathcal{M}_2)$ are parametrized by pairs (T, R), where $T = K_1 r_T K_2$ is a double coset, and R is an irreducible representation of the stabilizer $(K_1, K_2)^{r_T} = K_1 \cap r_T K_2 r_T^{-1}$.

Theorem (Yamagami)
The quantum dimension of (T, R) is

$$\text{FPdim}(T, R) = \frac{\sqrt{|K_1||K_2|}}{|K_1 \cap r_T K_2 r_T^{-1}|} \cdot \text{Dim}(R).$$ (2)
Boundary defects: Examples

Examples

- $\mathcal{D}(\mathbb{Z}_p)$: $K_1 = \{1\}, K_2 = \mathbb{Z}_p$. Single (simple) boundary defect of quantum dimension \sqrt{p}

- $\mathcal{D}(S_3)$:

<table>
<thead>
<tr>
<th>\mathcal{A}_1</th>
<th>\mathcal{A}_2</th>
<th>\mathcal{A}_3</th>
<th>\mathcal{A}_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{A}_1 = A + B + 2C / K_1 = {1}$</td>
<td>Vec$_{S_3}$</td>
<td>${\sqrt{3}, \sqrt{3}}$</td>
<td>${\sqrt{2}, \sqrt{2}, \sqrt{2}}$</td>
</tr>
<tr>
<td>$\mathcal{A}_2 = A + B + 2F / K_2 = \mathbb{Z}_3$</td>
<td>${\sqrt{3}, \sqrt{3}}$</td>
<td>Vec$_{S_3}$</td>
<td>${\sqrt{6}}$</td>
</tr>
<tr>
<td>$\mathcal{A}_3 = A + C + D / K_3 = \mathbb{Z}_2$</td>
<td>${\sqrt{2}, \sqrt{2}, \sqrt{2}}$</td>
<td>${\sqrt{6}}$</td>
<td>Rep(S_3)</td>
</tr>
<tr>
<td>$\mathcal{A}_4 = A + F + D / K_4 = S_3$</td>
<td>${\sqrt{6}}$</td>
<td>${\sqrt{2}, \sqrt{2}, \sqrt{2}}$</td>
<td>${\sqrt{3}, \sqrt{3}}$</td>
</tr>
</tbody>
</table>
Boundary defects: multi-fusion category

- $C_{ij} = \text{Fun}_C(M_i, M_j)$ is not a fusion category
- $\Gamma = \{C_{ij}\}$ (all possible excitations and boundary defects) is a multi-fusion category
 - 1 is not simple
 - Can compute quantum dimensions, etc.
- For TQC: Can we obtain braiding?
- Solution: Examine bulk counterparts
Recall: condensation functor $F : \mathcal{B} = \mathcal{Z}(\mathcal{C}) \to \mathcal{B}/\mathcal{A} = \mathcal{C}_{ii}$
$= \text{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_i)$ and adjoint I

Want a similar construction for boundary defects
Bulk symmetry defects

- Symmetries of a MTC: $\text{Aut}^{br}(\mathcal{B})$
- Global symmetry group: $\rho : G \rightarrow \text{Aut}^{br}(\mathcal{B})$
- Bulk symmetry defects form a G-graded fusion category (Barkeshli, Bonderson, Cheng, Wang):

$$\mathcal{B}_G = \bigoplus_{g \in G} \mathcal{B}_g, \quad \mathcal{B}_0 = \mathcal{B} \quad (3)$$
Bulk symmetry defects

- Fusion of symmetry defects respects group multiplication:
 \[a_g \otimes b_h \rightarrow c_{gh} \]
- **G-crossed braiding** (Barkeshli, Bonderson, Cheng, Wang):

\[
R^{a_g b_h} = \sum_{c, \mu, \nu} \sqrt{\frac{d_c}{d_a d_b}} \left[R^{a_g b_h}_{c_{gh}} \right]_{\mu \nu}
\]

Figure: M. Barkeshli, P. Bonderson, M. Cheng, Z. Wang (2014)
Bulk symmetry defects: Examples

- \(\mathcal{O}(\mathbb{Z}_p) : G = \mathbb{Z}_2, e \leftrightarrow m, \mathcal{B}_1 = \{\tau_0, \ldots \tau_{p-1}\}, \dim \tau_i = \sqrt{p} \)
- \(\mathcal{O}(S_3) : G = \mathbb{Z}_2, C \leftrightarrow F, \mathcal{B}_1 = \{\sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{3}, 2\sqrt{3}, 2\sqrt{3}\} \)
Suppose $B = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \text{Aut}^{\text{br}}(B)$, $\mathcal{A}_i \in B$ a gapped boundary. Then $A_{j_g} := \rho_g(\mathcal{A}_i) \in B$ is a gapped boundary.
Crossed condensation

Suppose \(\mathcal{B} = \mathcal{Z}(\mathcal{C}) \), \(\rho : G \to \text{Aut}^\text{br}_\otimes(\mathcal{B}) \), \(\mathcal{A}_i \in \mathcal{B} \) a gapped boundary. Then \(\mathcal{A}_{j_g} := \rho_g(\mathcal{A}_i) \in \mathcal{B} \) is a gapped boundary. Recall:

Definition

Let \(\mathcal{B} \) be a MTC, \(\mathcal{A}_i \in \text{Obj} \mathcal{B} \) a Lagrangian algebra. The *quotient category* \(\mathcal{B}/\mathcal{A}_i \) is the category s.t.

1. \(\text{Obj} \mathcal{B}/\mathcal{A}_i = \text{Obj} \mathcal{B} \)
2. \(\text{Hom}_{\mathcal{B}/\mathcal{A}_i}(X, Y) = \text{Hom}_\mathcal{B}(X, \mathcal{A}_i \otimes Y) \).

Replace the MTC \(\mathcal{B} \) with the \(G \)-graded category \(\mathcal{B}_G \).

Result:

\(F : \mathcal{B}_G \to \mathcal{Q}(G, \mathcal{A}_i) = \bigoplus_{g \in G} C_{ij}^g = \bigoplus_{g \in G} \text{Fun}_\mathcal{C}(M_i, M_j^g) \) (4)

(C, Cheng, Wang)

Iris Cong, Harvard

Defects between gapped boundaries

JMM, January 2018
Crossed condensation

Suppose $B = Z(C)$, $\rho : G \to \text{Aut}^{br}(B)$, $A_i \in B$ a gapped boundary. Then $A_{j_g} := \rho_g(A_i) \in B$ is a gapped boundary. Recall:

Definition

Let B be a MTC, $A_i \in \text{Obj } B$ a Lagrangian algebra. The *quotient category* B/A_i is the category s.t.

1. $\text{Obj } B/A_i = \text{Obj } B$
2. $\text{Hom}_{B/A_i}(X, Y) = \text{Hom}_B(X, A_i \otimes Y)$.

Replace the MTC B with the G-graded category B_G.

Iris Cong, Harvard

Defects between gapped boundaries

JMM, January 2018
Suppose \(\mathcal{B} = \mathcal{Z}(\mathcal{C}) \), \(\rho : G \to \text{Aut}^{\text{br}}(\mathcal{B}) \), \(\mathcal{A}_i \in \mathcal{B} \) a gapped boundary. Then \(\mathcal{A}_{j_g} := \rho_g(\mathcal{A}_i) \in \mathcal{B} \) is a gapped boundary. Recall:

Definition

Let \(\mathcal{B} \) be a MTC, \(\mathcal{A}_i \in \text{Obj} \mathcal{B} \) a Lagrangian algebra. The *quotient category* \(\mathcal{B}/\mathcal{A}_i \) is the category s.t.

1. \(\text{Obj} \mathcal{B}/\mathcal{A}_i = \text{Obj} \mathcal{B} \)
2. \(\text{Hom}_{\mathcal{B}/\mathcal{A}_i}(X, Y) = \text{Hom}_{\mathcal{B}}(X, \mathcal{A}_i \otimes Y) \).

Replace the MTC \(\mathcal{B} \) with the \(G \)-graded category \(\mathcal{B}_G \). Result:

\[
F : \mathcal{B}_G \to \mathcal{Q}(G, \mathcal{A}_i) = \bigoplus_{g \in G} C_{ij_g} = \bigoplus_{g \in G} \text{Fun}_\mathcal{C}(\mathcal{M}_i, \mathcal{M}_{j_g})
\]

(4)

(C, Cheng, Wang)
Crossed condensation

Crossed condensation functor:

\[F : \mathcal{B}_G \to \mathcal{Q}(G, \mathcal{A}_i) = \bigoplus_{g \in G} C_{ijg} = \bigoplus_{g \in G} \text{Fun}_\mathcal{C}(\mathcal{M}_i, \mathcal{M}_{jg}) \]
Crossed condensation functor:

\[F : \mathcal{B}_G \rightarrow \mathcal{Q}(G, \mathcal{A}_i) = \bigoplus_{g \in G} C_{ijg} = \bigoplus_{g \in G} \text{Fun}_C(\mathcal{M}_i, \mathcal{M}_{jg}) \]

Physical explanation:

Diagram:

\[\mathcal{A}_i \quad Y_- \quad \cdots \quad Y_+ \]

\[\mathcal{A}_i \quad X_{ij} \quad \mathcal{A}_j \]
Crossed condensation: Examples

- $\mathcal{D}(\mathbb{Z}_p)$: $B_1 = \{\tau_0, \ldots, \tau_{p-1}\}$, $C_{12} = \{\tau_{12}\}$, $\tau_i \mapsto \tau_{12}$
- $\mathcal{D}(S_3)$: $B_1 = \{\sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{3}, 2\sqrt{3}, 2\sqrt{3}\} \rightarrow C_{12} = \{\sqrt{3}, \sqrt{3}\}$
Theorem (C, Cheng, Wang)

Let \mathcal{A}_i and \mathcal{A}_j be two Lagrangian algebras (gapped boundaries) in $\mathcal{B} = \mathbb{Z}(C)$, and let \mathcal{M}_i and \mathcal{M}_j be the corresponding indecomposable module categories. Suppose \mathcal{A}_i and \mathcal{A}_j are related by a global G symmetry of \mathcal{B}. Then:

1. There is a projective G-crossed braiding of the boundary defects in \mathcal{C}_{ij} with those in \mathcal{C}_{ji}, and with the boundary excitations in \mathcal{C}_{jj}.

2. There is a canonical choice of this braiding and a systematic method to compute the projective representation.

3. If all defects in \mathcal{C}_{ji} are fixed by the action of $g \in G$, the projective G-crossed braiding is a projective braiding of boundary defects.

Braiding done in the bulk (through correspondence):

$$X_{ij} \otimes X_{ji} \rightarrow I(X_{ij}) \otimes I(X_{ji}) \xrightarrow{G^\times} \rho_1(I(X_{ji})) \otimes I(X_{ij}) \rightarrow \rho_1(X_{ji}) \otimes X_{ij}. \quad (5)$$
Braiding boundary defects: Examples

- $\mathcal{D}(\mathbb{Z}_2)$: get $\pi/16$ phase gate, Majorana zero mode braid statistics
- $\mathcal{D}(S_3)$: expect $SU(2)_4$ braiding, which would give universal TQC
Known:
- Gapped boundaries as indecomposable modules, Lagrangian algebras
- Boundary excitations, defects in multi-fusion category
- Bulk-edge correspondence for certain boundary defects, symmetry defects \rightarrow braiding

Goal:
- Other boundary defects not covered by this correspondence?
- New symmetry in the bulk?
- Efficient encoding/gates for topological quantum computation?
Acknowledgments

- Special to Maissam Barkeshli, Shawn Cui, Cesar Galindo for answering many questions
- Many thanks to Prof. Michael Freedman and everyone at Station Q
- None of this would have been possible without the guidance and dedication of Prof. Zhenghan Wang
Thanks!

Iris Cong, Harvard

Defects between gapped boundaries

JMM, January 2018
Unitary fusion categories (UFCs)

Some key properties of a UFC \mathcal{C} over \mathbb{C}:

- **Monoidal structure:**
 - Tensor product \otimes: fusion
 - Tensor unit 1: vacuum
 - Functorial associativity and unit isomorphisms, encoded by F symbols

\[
\begin{align*}
 i & \quad j & \quad k \\
 m & \quad l & \quad n
\end{align*}
\]

\[
= \sum_{n} F_{l;nm}^{i,jk}
\]

Unitary fusion categories (UFCs)

Key properties: [Cont’d]

- **Semisimplicity**: All objects are direct sums of *simple objects*
 - Finite number of simple objects, $\mathbf{1}$ is simple
 - *Fusion rules*: $x \otimes y \to \bigoplus C N_{xy}^z$
- **\mathbb{C}-linear**: $\text{Hom}(x, y)$ is a \mathbb{C}-vector space for all $x, y \in \text{Obj}(C)$, \otimes bilinear on morphisms

Examples: Vec_G, $\text{Rep}(G)$, ...
The Levin-Wen model

\(\mathcal{Z}(\mathcal{C}) \) is a *modular tensor category* (MTC):

- MTC is a UFC, simple objects form *anyon system*
- *Braiding* structure: \(\sigma_{ab} : a \otimes b \rightarrow b \otimes a \) for all \(a, b \) (\(R \) symbols)
- Non-degeneracy: only *transparent* anyon is unit

\[
\begin{align*}
R_{c}^{ab} & = a \quad b \\
\bigcirc \quad \bigcirc & = R \quad R \\
\]
Theorem (Fröhlich, Fuchs, Runkel, Schweigert)
\[A \text{ is a commutative algebra in a MTC } B \text{ if and only if the object } A \text{ decomposes into simple objects as } A = \bigoplus_s n_s s, \text{ with } \theta_s = 1 \text{ (i.e. } s \text{ is bosonic) for all } s \text{ such that } n_s \neq 0. \]

Theorem (C, Cheng, Wang)
A commutative connected algebra \(A = \bigoplus_s n_s s \) with \(\text{FPdim}(A)^2 = \text{FPdim}(B) \) is a Lagrangian algebra in the MTC \(B \) if and only if the following inequality holds for all \(a, b \in \text{Obj}(B) \):

\[
n_a n_b \leq \sum_c N_{ab}^c n_c \tag{6}
\]

where \(N_{ab}^c \) are the coefficients given by the fusion rules of \(B \).